National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
Polyomavirus minichromosomes: interactions with components of innate imunity
Satratzemis, Christos ; Forstová, Jitka (advisor) ; Trejbalová, Kateřina (referee)
The genome of polyomaviruses is a circular dsDNA (double-stranded DNA) which is associated with cellular histones within virions and during the entire viral replication cycle. Given the structural similarity to eukaryotic chromatin, the complex of polyomaviral DNA with histones is called minichromosome. The chromatin state of minichromosomes influences viral transcription and replication which could be exploited by the host innate immune response. One of the components of innate immunity, that affects viral chromatin, is the non-canonical histone H3.3, its chaperone DAXX- ATRX (death domain associated protein 6-alpha-thalassemia, mental retardation X-linked syndrome) and protein complexes called PML (promyelocytic leukemia protein). In order to trigger the innate immune response, foreign and/or stress molecules have to detected. During mouse polyomavirus (MPyV) infection, the innate immune response is initiated via the DNA sensor cGAS (cyclic GMP- AMP synthase). In this master's thesis, the distribution of histone H3.3, its chaperone DAXX-ATRX and the PML protein was analyzed during infection with MPyV. Using mass spectrometry, the histone was detected within viral chromatin. The data suggest that the chaperone complex and PML are involved in the regulation of H3.3 incorporation into the chromatin...
Posttranslational modification of the adapter protein DAXX in the cellular response to genotoxic stress
Bražina, Jan ; Anděra, Ladislav (advisor) ; Černý, Jan (referee) ; Vodička, Pavel (referee)
Maintaining the chromosome continuity and complete genetic information in human cells is crucial for cell survival and the whole organism. It prevents life-threatening pathologies and preserves genetic continuity. However, cellular DNA is exposed to both endogenous and exogenous stress damaging its content and integrity. This stress activates mechanisms involving detection and repair of these damaged sites (DDR). One of the most serious types of DNA damage double-stranded breaks (DSB) occuring when both strands are severed. DSBs trigger wave of PTMs that regulate protein interactions, nuclear localization and catalytic activity of hundreds of proteins. Such modifications include acetylation, methylation, SUMOylation, ubiquitinylation and especially phosphorylation. The most important kinases involved in DDR kinases are ATM, ATR and DNA-PK. These kinases are activated immediately after the detection of the damaged area. DAXX (Death-associated protein 6) is an adapter and predominantly nuclear protein, which is involved in chromatin remodeling, gene expression modulation, antiviral response and depositing histone H3.3 variants into chromatin or telomeres. Daxx is essential for murine embryogenesis, since the homozygous deletion is lethal in E9.5-10. In 2006 a study mapping the substrates of kinases...
Analysis of cell signaling mediated by the adapter protein Daxx
Švadlenka, Jan ; Anděra, Ladislav (advisor) ; Forstová, Jitka (referee) ; Stopka, Tomáš (referee)
2 Abstract Multifunctional adapter protein and histone chaperone Daxx has been described in nu- merous cellular processes, including the regulation of apoptotic and stress signalling, antiviral response and processes connected to chromatin (e. g. transcription). Its influ- ence on chromatin-related processes is mainly carried out by several associated en- zymes, such as DNA-methyltransferase-1, histone deacetylases and chromatin- remodelling ATPase ATRX. In the complex with ATRX Daxx functions as a chaperone of histone-3.3, maintaining the constitutive heterochromatin e. g. at centromeric and telomeric regions. The main aim of this Thesis was a better understanding of the Daxx cellular functions through identification and functional characterization of its novel interacting proteins. Using the yeast two-hybrid screen, several such new Daxx-interacting proteins were identified. These proteins were mainly nuclear, connected to the regulation of chroma- tin-related processes. More detailed analysis focused on the interaction of Daxx with chromatin-remodelling ATPase Brg1. This interaction was confirmed both in vitro and in the cells, where Daxx and Brg1 associated mainly in high molecular weight pro- tein complexes. These likely chromatin-remodelling complexes contain, in addition to Brg1, several...
Analysis of cell signaling mediated by the adapter protein Daxx
Švadlenka, Jan
2 Abstract Multifunctional adapter protein and histone chaperone Daxx has been described in nu- merous cellular processes, including the regulation of apoptotic and stress signalling, antiviral response and processes connected to chromatin (e. g. transcription). Its influ- ence on chromatin-related processes is mainly carried out by several associated en- zymes, such as DNA-methyltransferase-1, histone deacetylases and chromatin- remodelling ATPase ATRX. In the complex with ATRX Daxx functions as a chaperone of histone-3.3, maintaining the constitutive heterochromatin e. g. at centromeric and telomeric regions. The main aim of this Thesis was a better understanding of the Daxx cellular functions through identification and functional characterization of its novel interacting proteins. Using the yeast two-hybrid screen, several such new Daxx-interacting proteins were identified. These proteins were mainly nuclear, connected to the regulation of chroma- tin-related processes. More detailed analysis focused on the interaction of Daxx with chromatin-remodelling ATPase Brg1. This interaction was confirmed both in vitro and in the cells, where Daxx and Brg1 associated mainly in high molecular weight pro- tein complexes. These likely chromatin-remodelling complexes contain, in addition to Brg1, several...
Analysis of cell signaling mediated by the adapter protein Daxx
Švadlenka, Jan
2 Abstract Multifunctional adapter protein and histone chaperone Daxx has been described in nu- merous cellular processes, including the regulation of apoptotic and stress signalling, antiviral response and processes connected to chromatin (e. g. transcription). Its influ- ence on chromatin-related processes is mainly carried out by several associated en- zymes, such as DNA-methyltransferase-1, histone deacetylases and chromatin- remodelling ATPase ATRX. In the complex with ATRX Daxx functions as a chaperone of histone-3.3, maintaining the constitutive heterochromatin e. g. at centromeric and telomeric regions. The main aim of this Thesis was a better understanding of the Daxx cellular functions through identification and functional characterization of its novel interacting proteins. Using the yeast two-hybrid screen, several such new Daxx-interacting proteins were identified. These proteins were mainly nuclear, connected to the regulation of chroma- tin-related processes. More detailed analysis focused on the interaction of Daxx with chromatin-remodelling ATPase Brg1. This interaction was confirmed both in vitro and in the cells, where Daxx and Brg1 associated mainly in high molecular weight pro- tein complexes. These likely chromatin-remodelling complexes contain, in addition to Brg1, several...
Analysis of cell signaling mediated by the adapter protein Daxx
Švadlenka, Jan ; Anděra, Ladislav (advisor) ; Forstová, Jitka (referee) ; Stopka, Tomáš (referee)
2 Abstract Multifunctional adapter protein and histone chaperone Daxx has been described in nu- merous cellular processes, including the regulation of apoptotic and stress signalling, antiviral response and processes connected to chromatin (e. g. transcription). Its influ- ence on chromatin-related processes is mainly carried out by several associated en- zymes, such as DNA-methyltransferase-1, histone deacetylases and chromatin- remodelling ATPase ATRX. In the complex with ATRX Daxx functions as a chaperone of histone-3.3, maintaining the constitutive heterochromatin e. g. at centromeric and telomeric regions. The main aim of this Thesis was a better understanding of the Daxx cellular functions through identification and functional characterization of its novel interacting proteins. Using the yeast two-hybrid screen, several such new Daxx-interacting proteins were identified. These proteins were mainly nuclear, connected to the regulation of chroma- tin-related processes. More detailed analysis focused on the interaction of Daxx with chromatin-remodelling ATPase Brg1. This interaction was confirmed both in vitro and in the cells, where Daxx and Brg1 associated mainly in high molecular weight pro- tein complexes. These likely chromatin-remodelling complexes contain, in addition to Brg1, several...
Posttranslational modification of the adapter protein DAXX in the cellular response to genotoxic stress
Bražina, Jan ; Anděra, Ladislav (advisor) ; Černý, Jan (referee) ; Vodička, Pavel (referee)
Maintaining the chromosome continuity and complete genetic information in human cells is crucial for cell survival and the whole organism. It prevents life-threatening pathologies and preserves genetic continuity. However, cellular DNA is exposed to both endogenous and exogenous stress damaging its content and integrity. This stress activates mechanisms involving detection and repair of these damaged sites (DDR). One of the most serious types of DNA damage double-stranded breaks (DSB) occuring when both strands are severed. DSBs trigger wave of PTMs that regulate protein interactions, nuclear localization and catalytic activity of hundreds of proteins. Such modifications include acetylation, methylation, SUMOylation, ubiquitinylation and especially phosphorylation. The most important kinases involved in DDR kinases are ATM, ATR and DNA-PK. These kinases are activated immediately after the detection of the damaged area. DAXX (Death-associated protein 6) is an adapter and predominantly nuclear protein, which is involved in chromatin remodeling, gene expression modulation, antiviral response and depositing histone H3.3 variants into chromatin or telomeres. Daxx is essential for murine embryogenesis, since the homozygous deletion is lethal in E9.5-10. In 2006 a study mapping the substrates of kinases...
A potential role of DAXX in cell cycle arrest and cellular senescence
Valášek, Ján ; Hanzlíková, Hana (advisor) ; Vopálenský, Václav (referee)
Death domain-associated protein 6 (DAXX) is a multifunctional protein involved in diverse cellular processes. It acts as a histone chaperone or regulator of transcription and apoptosis, in which is its role quite controversial. DAXX also participates in regulation of cell DNA damage response (DDR). DAXX co-creates and stabilizes complex with Mdm2, which negatively regulates the stability of p53, an important tumor suppressor, which is a part of signalling node in the DDR. If DNA damage is not lethal for the cell and unables it to proliferate, the irreversible state of cell cycle called cellular senescence takes place. Under physiological conditions, induction of senescence can prevent the development of tumorigenesis. Therefore, the description of mechanisms involved in the induction of senescence has potential clinical significance. In my thesis, I aimed to determine changes in the level of DAXX protein in senescent cells and to characterize the manner of its regulation. In tumor cells MCF-7 and primary BJ fibroblasts, I observed decrease in DAXX protein level and its regulation. I tested the hypothesis according to which an increase in DAXX level before DNA damage canprevent induction of cellular senescence, or increase in its expression during senescence can cause recovery of cell proliferation....

Interested in being notified about new results for this query?
Subscribe to the RSS feed.